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- NON-LINEAR TRANSVERSE ELECTRON BEAM DYNAMICS
IN A MODIFIED BETATRON ACCELERATOR

I. Introduction
High energy accelerators capable of producing high current electron beams
are rapidly becoming an active area of research. The motivation for

developing these devices is related to potential applications of high current

beams to the generation of high power coherent radiation1

and national defensez.

, X-ray radiography

Among the various accelerating schemes that have the potential to produce

3

ultra-high power electron beams, induction accelerators” appear to be the most

promising. Induction accelerators are inherentiy low impedance devices and
thus are ideally suited to drive high current beams. Tﬂé acceleration process
is based on the inductive electric field produced by a time varying magnetic
field. The electric field can be either continuous or localized along the
acceleration path.

Quite naturally, induction accelerators are divided into 1linear and

cyclic. The linear devices are in turn divided into Ast:rou—typel‘-8

9,10 11,12,

» Radlac-

and auto-accelerator In the first type, ferromagnetic

type
induction cores are used to generate the accelerating field, while "air core”
cavities are used in the second. In the auto-accelerator the air core
cavities are excited by the beam's self fields rather than external fields.
Similarly, cyclic devices can be divided into conventiona113-ls and modified
betatronsls-zo. The field configuration in the modified betatron includes, in
addition to the time varying betatron magnetic field, which is responsible for
the acceleration, a strong toroidal magnetic field that substantially improves
the stability of the accelerated beanm.

The linear dynamics of high current electron rings in modified betatron

fields, with and without stellarator fields, has been studied extensively
Manuscript approved July 26, 1984,

’.’u--

8,
AT M R T ol 0 W W ) W o NN e ¥ SNy P

L ALNLARAL BE BY LG Lt i L id ]

» - - O W P, W . PR SRR - - AN |
" ® o P AT T IS ATAFT ! 3. -‘..' e 7-* » ” / AN $.~ ST -
[} I‘ .l' > J‘fk)‘! . “ N W . ¢ y



16-22

during the last few years These studies are based on the linearized
equations of motion, i.e., they assume that the electron ring is confined near
the minor axis of the torus.

In this paper we study the transverse ring dynamics in a modified
betatron accelerator using a different approach. The ring orbits are not
determined from the equations of motion but rather from the two exact
constants of the motion and the potentials at the centroid of the ring. The
main advantage of the present approach is that the ring orbits can be
determined over the entire minor cross-section of the torus and not only near
its minor axis. The topology of orbits near the wall of the toroidal vacuum
chamber 1is of vital importance during injection, since optimization of the
confining region requires the beam to be injected far away from the minor axis

of the torusza'zs.

It has been found that the shape of the ring orbits, in
the transverse to the toroidal magnetic field plane, can be very complex, in

particular in the high current limit.
II. Constants of the Motion

Consider an electron ring inside a perfectly conducting torus of circular
cross section as shown in Fig. 1. The center of the ring 1is located at a
distance Ar,Az from the minor axis of the torus. The kinetic energy nczY of a
reference electron that is located at the position r,z varies according to the
equation

2

me %% (r,z) = - 'el v.E (r,2), (1)

where £ (r,z) 18 the total electric field at the position of the reference

electron. The electric field is related to the space charge % and magnetic




vector potential A by

E(r,e) m-vo -1 (2)

where the total time derivative of & is given by

dé 3% +>

For the problem of interest, the accelerating fields vary slowly in time and

thus

ok | 30

Combining Eqs. (1) to (4), we obtain

dy(r,z) _ lg% de(r,z) _

de e dt

¥(r,z) - 15% 4(r,z) = constant. (s)
mc
According to Eq. (5) the sum of the kinetic and potential energy of the
reference electron is conserved.
Since the fields of the modified betatron configuration are independent
of the toroidal angle 6, the canonical angular momentum Pe is also a constant

of the motion, i.e.,

e
Pg= Yur v, - l:l r Ae = constant, (6)




b - where A9 is the toroidal component of the total magnetic vector potential
f}: and Va is the toroidal velocity of the reference electron.
£
. Assuming that v, ~ v and eliminating Y from Egs. (5) and (6), it is obtained
8
X: Py e 2 1, e
e [( =+ A(r,z)) +1] - 1—%-o(r,z) = constant, (7a) ¢
mer U]
mc me
E{ .
A or, at the centroid of the ring
2
= P 2 1/2
d [(;E% + lg% Ae(R.Z)) +1] - 15%-@(&.2) = constant. (7b)
3 e me
‘;7 For very high energy beams, i.e., when 72 > 1, Eq. (7b) is reduced to
5 P6 e
L = * [Ae(k,z) - #(R,2)] = constant. (7¢)
'. m
- This non-linear conservation law can furnish very useful information on
{} the motion of the ring in the r,z plane, provided that the potentials Ag
P and % at the center of the ring are known. It should be noticed that Eqs. (7)
. are independent of the toroidal magnetic field.
(s
Wy
oY
4

III. The Potentials

In Eq. (7), the total magnetic vector potential Ag(r,z) is

Ag(r,2) = AE(r,2) + A% (r,0), :

where Ae'xt(r,z) is the external and Ae'elf(r,z) is the self magnetic vector
A potential.
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It is assumed that the betatron magnetic field is described by '_:
5
t o, o a 2 .i;
ex 0 r 0 -n nz ’
(r,2) = B, [(r ) (Z-n) YY) Y s (8) t
&
where B,  1s the magnetic field at r=r,, 2z = o and n is the external field Ry
index, i.e., '
,‘,-.
. v
am-e® (my 4
Bzo or to,o :::j-
O
For a cylindrical electron beam inside a straight perfectly conducting :‘..
LYy
cylindrical pipe of circular cross section, the self potentials can be :
computed exactly, even for large beam displacements from the minor axis of the 2
torus. In the local coordinate system p,¢ the self potentials inside the \\
> h,.
beam, i.e., for ’o—ll < l‘b are given by 3
¢ ’
L]
self [92 2-29 A cos (¢~a)] »
(p, ) = - 2' l N B {1/2+ !.n— "5’1
r 2 ’
b Zrb X
)
[
- T @) @) ! cos (40}, (9a) i
=] e
3
e
and |
. Y
= '}‘
a jpz+A2-2 p A cos (¢-a)] j
®(p,0) = - 2|e| N, {V+ m 2 - B
s Ty 2 r, 2 0
. b ._"5
.4
[} L 2 i}
- @ @ 1 cos (a2}, (9b) |
z.l a a O‘.'s
o
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At the beam center, i.e., for p = A and ¢ = a, Eqs. (9a) and (9b) become

self . a (R—ro)z + 22 |
AT (R,2) = =2 |e|n, B, {Yp+ tn T, + 1 - —aT—-—].. (10a)

a (R—r°)2 + 22
®(R,2) = - 2 |e| N, {Yp+ 02 + e [1I- —5— 1}, (10b)
b a

where N, is the linear electron density, r, is the minor radius of the beam,

L
a is the minor radius of the conducting pipe and Be = Vo/c*

Figure 2 shows the ratio -A:elf/ZNz |e| (Ve/c) from Eq. (10a) at Z = o,

together with results from the computer code PANDIRA. This code solves the

differential equations for X and ® 1n a non-uniform triangular mesh in r-z

coordinates and its present version has been developed by R.F. Holsinger. The
various parameters for the runs shown in Figs. 2 to 5 are listed in Table I.
The agreement between Eq. (10a) and the numerical results 1s excellent. The
maximum difference between the analytical and numerical results is less than
0.4%.

Figure 3 shows the stream function ¥ = RAzelf. In contrast to A:elf, the
stream function ¢ peaks away from the minor axis of the torus. The radial
displacement of the peak can be computed from 3y/3R = 0 and is given by the
relation

8, = (a/2) (a/z,) (Yo + tn a/z)).
This relation predicts that ¢ peaks 2.8 cm from the minor axis, which 1is not
v by far-off from the 2.6 cm of Fig. 3.
Results for the electrostatic potential are given in Fig. 4. Again the

agreement between Eq. (10b) and numerical results is excellent. The maximum
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s X
§?« difference A¢ between the electrostatic potential computed from PANDIRA and
ot
B~ that of Eq. (10b) is less than 2%.
l Figure 5 shows the stream function ¥ for a torus with a major radius £, -
ig} 32 cm. In agreement with the approximate expression for Ap, the displacement
2.
‘ +
MY of the peak increased by about a factor of 3.
*.', .
!‘f To obtain a better understanding of the potentials inside a pevfectly
'if conducting torus, we solved26 the differential equations for ¢ and X to first
Lyi order in the ratio a/R, but to any order in the normalized displacement A/a.
b2
." : For a constant particle density n, ring and to second order in A/a, the
ite
: N electrostatic potential and the stream function § at the center of the ring
5 CY
;f: are given by
L
'.\ l (R‘to)z + Zz
o %(R,2) =~ =~ 2 N, Ie’ [Yo+ ta (a/ry) - 5
by
25 LY 2
r R-r
b
- (—R'B)]- (11a)
SO 8a
o
AN
S
D
7oes ) (R-ro)2 + 22
} WR,2Z) =~ 2 Nz lel R 89[ /2+ in (a/rb) - 82
3rb2 Rrro .
-~ 2 ], for 8 = constant (11b)
8a

and

82, 2 2 (ol
(R ro) + 2 ) Ty (R ro) j
a2 2 R ’

WR,2) = - 2N |e[R8y [1/2 + n(a/r)) - -~

for Je = constant, (lle)

o, W,
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N
3N
j# Y Similarly, the fields at the centroid of the ring are given by
.\.l
ey, (ee) L el
1N - - — — —
e Er a [ a + (ZR) in rb + 8Ra ]! (12a)
2 el
X 2|e|N 8
. 276 2
e B = -— (3) (12¢) .
th)
W
<
908 . 2|e|n,8, l(R—ro) S (8) (1 24 2)
) z a a 2R r,
N
o 2 .
o + G, /8Ra) |, for 6 = constant, (124)
L
‘ _,: and
' N
LY
"l
Y 2|e|N,B. (R-r )
’ B-'lze °-—)(!.n—+1)
2 a a
, b
I::- 2
5 b
:;3: + (ggg)]s for Jy = constant. (12e)
Q'
oA
R’ The toroidal term in Eq. (11) is very small for the parameters of interest
b ’_f
o and therefore it is not surprising that the potential at the center of the
4' ring are approximately cylindrical.
; For low energy rings the small toroidal term could be important and could
g
s;: have a profound effect on the shape of the orbits. However, when v D> 1, the -

-

potentials for n, = constant and J, = constant become approximately equal and

o~
\i

1

P
b

by

hence they do not contribute substantially in Eq. (7c¢).
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IV. Transverse Ring Orbits

Equation (7b) has been solved numerically, using the potentials of Eq.
(11). Typical macroscopic beam orbits in the r,z plane are shown in Figs. 6
to 8. The various parameters for those runs are listed in Table II. Only
orbits that are at least one beam minor radius away from the wall are shownm.
Each orbit corresponds to a different value of the constant in Eq. (7b). A
striking feature of the results is the sensitivity of the orbits to the value
of the constant in Eqs. (7).

The number marked in every fourth orbit is equal to 104 [constant -
<constant>], where the average value of the constant, i.e. <{constant> for each
run is shown at the top of the figure. For all the cases tested, less than 3%
change in the constant of the motion was sufficient to generate orbits that
extend over the entire minor cross—gsection of the torus. Orbits shown with
solid lines correspond to a constant that is greater than <{constant> and those
shown with a dashed line correspond to a constant that is less than
<{constant>,

All the orbits close inside the vacuum chamber. However, a fraction of
them lie inside the annular region that extends from the dotted-dashed line to
the wall. This region has a width that is less than the beam radius and hence
part of the beam will strike the wall,

Ring orbits in the r,z plane from Eq. (7b) using the potentials of Eq.
(10), i.e., emitting the toroidal terms, are shown in Figs. 9 to 1l1. It 213

apparent that there is not any noticeable difference between these orbits and

those of Figs. 6 to 8.
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The predictions of Eq. (7b) are in very good agreement with the results
20

from our particle in cell (PIC) computer simulationm. Figures 12 to 14 show
three computer simulation runs. As may be seen from Table III, with the
exception of the betatron field, the various parameters in the simulation are
the same with those of Figs. 6 to 8. The slightly lower value of the betatron
field in Figs. 12 to 14 1is related to the different radial profiles for Je in
the simulation and the potentials of Eq. (l11). The orbit wiggles are due to
the finite ring emittance, which was taken zero in the derivation of Eq.
(7v). It should be noticed that in these computer simulation runs the
electron ring was reasonably well matched to the magnetic field as it 1is
manifested from the small variations in the axial and radial ring envelopes
shown in Fig. 15.

In the general case, it is difficult to derive an explicit expression for
the ring orbits in the transverse plane from Eqs. (7b) and (11). However, in
the 1limit Y2>>l, 8 / B =1 and v/y < 1, such an expression can be obtained

near the minor axis of the torus.

Since By = B and YB = Y - 1/2y, Eqs. (5)and (6) give

P
—-g + ‘l% A:"t + -lsi- (A:elf - &) + 2—1 = constant = G. (13)
mc mc Y
Expanding Y near r, and using Eq. (5), it is obtained
Ie! 39 9G
&y Y = r ‘r br + ar 'r Ar,
me o o

where Ar = R-ro. It is shown in the next section that 5—“5-'1_ = 0 and thus the

above equation becomes

|e! P
GY = Y-Yo = - E ro Ar. (14)
10
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,.: From Eqs. (lla) and (llc), the difference in the self potentials can be

written as

2

2 2 r
' self _ - a_Ar+AZ° b Ar
A ® = 2N, le|] {172 + 2n = > > 5

- 9

. b (1-89).  (15)
o b a 8a

Since

2:: 1-86 % =B = 1/2Y2 and substituting 8y from Eq. (14) 1in the expansion

for I/Y2 , it is obtained

» Ll _2 Je 20
b5 -y = 2y 1= A B, el 16
"0’ Yo 0o mc o

Similarly, expanding 1/2y as

S La L |
2y 2v 8r|to Ar, an

b

and 1/R as

e
I

- -
L
N

'(r—:)[l-f—:+(:—:)], (18)

vy i'.-é: .
o |-

o
B e

NEN

and using a linear expression for the external vector potential

yy

2 2
+ Ar”(1-n) + AZ ; ]’

2
2:0 2r°

Aext

. g =B

(19)
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Eqs. (13) .to (19) give

ext 2 : ext 2 2
[ Pe on ro vro ] (Ar “ qzo ro vro Az
mer + e U -] (F) ¢ [F—"0 - 2 ] ()
o Y a o Yo a o
2
P r
] \Y b a Ar ~
- [ + (—=+m=)](=)=06 (20)
ncr 2Y°2 Za2 T, T, :

where

= - = ~’ - 2
or = Rr, 8z=2,G=6- [ 1/2v° + P"/"‘c"o

2 t t
P (1) (72 tn ) 5 e 1 ), 02X o] 33,

and v is the Budker's parameter.
2
Equation (20) describes the ring orbits near the minor axis, when Y >> 1.
These orbits are centered around the minor axis of the torus when the

coefficient of the (%E) term is zero, {.e., when
o

2

8o v [(rb) a]
-- ) +twm (21)
mer ZYOZ 2a Ty

P
8
Por (ry/,)? << 1 and v, >> 1, Eq. (21) predicts that —-

= 0. Therefore, the
orbits are circular when the external field index is approximately equal to 0.5,
in agreement with the computer results shown in Figs. 7 and 13.

This result is not in agreement with previous work’l9,20,22, which for Jg =

constant predicts circular orbits when

[1-(vy) tn (-r—a-) ]

b
1+ (2v/y,) (/2 + 12 B
b

(22)

=
N
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_.::... It has been determined that the discrepancy is due to an inconsistency in
:;_: the expansion that gave erroneous results for the two slow frequencies
'r::: w, and w, and made the expression for the field index, i.e., Eq. (22),
~ invalid.
Additional results from Eq. (7b) are shown in Figs. (16) to (19). The
:- ’ various parameters for these runs are listed in Table IV. As the ring current
. ) increases, the orbits are dramatically modified as manifested by the results
{ of Fig. 18, Midway to the wall, the orbits change from circles to finite
- width C shaped forms that evolve to cresents or "bananas™. At the tips of the
" crescents the bounce frequency becomes zero and the macroscopic beam motion
‘:; transitions from diamagnetic to paramagnetic and vice versa. Particle in cell
b computer simulation results show that the beam can go through such a
:}_: transition without any noticeable interruption. A typical case is shown in
}:‘% Fig. 20. The various parameters of this run, that lasted for more than 1
5y microsecond, are listed in Table V. Figure 20a shows the orbit of the center
;’-:: of the ring in the r,z plane. The time interval beween two successive dots is
%::4‘ 20 nsec. According to Figs.\ZOb and 20c the ring envelope changes only
-‘ slightly during the rum.
o
ﬁ: V. Extreme of the Constant of the Motion
; The extreme of Eq. (5) furnishes useful information on the dynamics of
: }".“ the ring in the r-z plane. First, we will show that this extreme is the
-E,,: . radial balance equation of motion for the reference electron.
kf’ Setting the partial derivative of Eq. (5) with respect to r equal to zero
2
e o e » o, (23)
) mc- r
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and using .the relation v = (1 + BZY )/2 and Eq. (6), we obtain

4

1EE

W
e

>

o f
E\_‘ P 34 OXt 3a %!

N Vo[- +1—%°’ = +J—%e = b (24)
’ mcr me mc T

-

j,‘ where we have assumed that 3 = v/c is approximately equal to 99 = Vo/c*

-

::": Substituting Eq. (6) into Eq. (24) and using the equations

:. ext ext

- p Xt _ Ag + ) (25
9 z r or  °* a)
. | Bself A;elf . aA;elf (25b)
+ z r ar °

<5

N and

=

I

.~ Ll

# it is obtained

:

i v29 Vo ,_ext self

N —Ym—r--- |e| [Er+—g(nz +Bz )]. (26)

i.e., the radial balance equation. This equation gives the equilibrium

LN, % <

position of the ring, which is located along the Sr axis. At this position

( |
o the reference electron at the centroid of the ring moves only along the {
~° |
‘;: toroidal direction, i.e, v = v, = 0. |
~ IN
< When the equilibrium position is at r = r, the toroidal velocity of the

.. reference electron can be determined from Eqs. (6) and (21) and is .
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3
- Yo b
- With the exception of the very small term on the numerator, Eq. (27) 1is the
; . same with the expression reported previously (20) for beams with square
’é current density profile.
L
The external magnetic field B::t required to confine the ring at r = r,
N can be readily found from Eq. (27). Omitting the small term in the numerator
\
":'. of Eq. (27),we obtain
o
< n::" P11+ (12 + 0], (28)
< Yo )
\:_
y sp 00 me
where the single particle magnetic field is Bzo - -,-;I- .
o
3
S
} 3- The magnetic field required to maintain the beam at an equilibrium
' position that is different than r, can also be determined from the radial
balance equation. Substituting E. and B'elf from Eqs. (12a) and (12e) into Eq.
2
) (26), it is obtained
LSy
L R(R-r) 2
; -r T
o n:xt B:p{1+-$—"[1/2+zn-% + el bz]} (29)
4.\;‘ b a (vB) 8a (vB)
"' Equation (29) has been derived under the assumption that v is not a function
K~
..\': Of R.
Y
;‘: The predictions of Eq. (29) are in excellent agreement with the result of
AN
" A the NRL computer simulation code. Three examples are shown in Table VI.
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VIi. Summgry

The non-linear beam dynamics in the plane transverse to the toroidal
magnetic field 1s studied using the two constants of the motion, instead of the
linearized equations of motion. This approach allows the beam orbits to be
determined over the entire minor cross-section of the torus and not only near
the minor axis.

It was found that the orbits are sensitive to the external field index, to
the value of the constant of Eqs. (7) and to the beam current. The orbits in
the r,z plane always close inside the vacuum chamber, although often very near
the perfectly conducting wall. As a result, beam interruption will occur
whenever the electron ring moves along one of these orbits.

In addition, it has been shown that the extreme of Eq. (5) provides
information on the external magnetic field required to confine the ring at its
equilibrium position and the displacement of the equilibrium position when the

beam energy is not matched to the vertical field.
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Table 1

Parameters for the runs shown in Figs. (2) to (5)

SN R AR F g i g AR AL X g L aFA A QR ALS L 8

)

CRER CE LS LR A A AT

Parameter Fig., 2 Fig. 3 Fig. 4 Fig. 5
Torus major radius LA (cm) 100 100 32 32
Torus minor radius a (cm) 16 16 16 16
: Electron ring minor radius Ty, (cm) 3 3 3 3
Electron ring vertical displacement Z (cm) 0 0 0 0
Table II
Parameters for the results shown in Figs. (6) to (8)
Fig. 6 Fig. 7 Fig. 8
External field index 0.35 0.5 0.65
Torus major radius (m) 100 100 100
Torus minor radius (cm) 16 16 16
Ring minor radius (cm) 3 3 3
Ring current (kA) 5 5 5
Electron energy (Mev) 3.123 3.123 3.123
Betatron field B (G) 138.4 138.5 138.5
Pe/\lcro -0.0018 -0.0020 -0.0023
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Table III

RN Parameters of the computer simulation runs in Figs. (12) to (14)

e Fig. 12 Fig. 13 Fig. 14

p External field index n 0.35 0.5 0.65

e -
2

AN Initial beam energy Y, = 7.117

W

Beam current I (kA) = 5 KA

Torus major radius r, (cm) = 100

Initial beam minor radius ry (cm) = 3

Torus minor radius a (cm) = 16

Betatron magn. field at T, 2 =0, B, (G) = 136.2

Toroidal magn. field at r

o* 2= O Boe (G) = 388

Initial emittance € (rad -~ cm) = 0.1
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Table IV

Parameters for the runs shown in Figs. (16) to (19)

Cylindrical Potentials

ot

- &

® o

YL

Parameter Fig. 16 Fig. 17 FPig, 18 Fig. 19
Torus major radius r, (cm) 100 100 100 100
Torus minor radius a (cm) 16 16 16 16
Electron ring minor radius ry (cm) 3 3 3 3
Electron ring energy E (MeV) 1.0 1.0 3.0 1.0
Electron ring curreat I (kA) 1.0 2.0 10.0 1.0
External field index n 0.5 0.5 0.5 0.5
Equilibrium position I'q 100 100 100 112
Vertical magnetic field B, (G) 51.74 56.08 159.24 53.52
Norm. canonical sngular momentum PO/lcto 0 0 0 -2.37:10-3
19
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Table V

Parameters of the computer simulation run shown in Fig. 20.

Run No. D1/111.50

Initial beam energy v, = 2.76 (E = 0.9 MeV)
Beam Current 1 (kA) = 1

Major radius r, (cm) = 100

Initial beam minor radius r, (cm) = 2.5

Torus minor radius a (cm) = 16

Initial beam center position ry (cm) = 111.0
Betatron magn. field at r,, z = o, B, (G) = 47
Toroidal magn. field at s Z = 0, Boe (xg) = 400
Initial emittance € (rad - cm) = 0.175

Initial temperature spread (half-width)'é$ =0
External field index n = 0.5

Self field index n, = 8.6

Wall conductivity = =

Time step (nsec) = 0.10

No. of particles = 2048
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Fig. 2. Normalized self magnetic vector potential from Eq. (10a) and from
_._’,'. computer code PANDIRA. The various parameters are listed in
;'.' i Table I.
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Constant of the Motion - < 8.228 >

Fig. 6. Orbits of the ring centroid in the transverse plane from Eq. (7b) and the
potential of Eq. (11), for an external field index n = (0.35. The rest of
the parameters are listed in Table II.
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Fig. 7. Orbits of the ring centroid as in Fig. 6, but with n = 0.5.
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Constant of the Motion - < 8.229 >

~ Fig. 9. Orbits of the ring centroid in the transverse plane from Eq. (7b) and the

potentials of Eq. (10) for n = 0.35. The rest of the parameters as in
Table II. ‘
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Fig.11. Orbits of the ring centroid as in Fig. 9, but with n = Q.65.
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' listed in Table III. The initial ring position was R = 108 cm, Z = 0.
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Fig.13. Computer simulation results showing the orbit of the ring centroid as in
Fig. 12, but for n = 0.5.
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Computer simulation results showing the orbit of the ring centroid as in
Fig. 12, but for n = 0.65.
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Fig.15a Radial ring envelope as a3 function of time for n = 0.5. The rest of the
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Fig.15b Axial ring envelope as a function of time for n = 0.,5. The rest of the
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